Photorespiration and $CO₂$ fixation in the red alga *Porphyra yezoensis* Ueda

Kunshan Gao*, Yusho Aruga**, Kozi Asada***, Toshiaki Ishihara****, Toru Akano**** and Masataka Kiyohara****

*Kansai Environmental Engineering Center, Nakazaki-nishi 2-3-39, Kita-ku, Osaka, 530 Japan **Tokyo University of Fisheries, Konan-4, Minato-ku, Tokyo, 108 Japan *** Research Institute for Food Science, Kyoto University, Uji, Kyoto, 611 Japan **** Technical Research Center, The Kansai Electric Power Co. Inc., Nakoji, Amagasaki, Hyogo-ken, 661 Japan

Gao, K., Aruga, Y., Asada, K., 1shihara, T., Akano, T. and Kiyohara, M. 1992. Photorespiration and CO₂ fixation in the red alga Porphyra yezoensis Ueda. Jpn. J. Phycol. 40: 373-377.

Gas exchange in photosynthesis of the red alga Porphyra yezoensis was investigated to understand its growth enhancement in high CO_2 concentration. It was found that oxygen ($^{18}O_2$) uptake by the alga increased linearly with increased photosynthetically active radiation, being about 40% of photosynthetic oxygen evolution at 250 μ mol photons m⁻¹ s⁻¹. A substantive evidence for active HCO₃⁻ transport by the alga was obtained in that $CO₂$ uptake rate was extremely slow compared to the photosynthetic oxygen evolution rate. 1n the culture of the alga using aeration, dissolved inorganic carbon (D1C) concentration decreased while pH increased from the beginning of light period and increased while pH decreased from the start of dark period. This is because photosynthetic CO_2 fixation proceeded faster than the dissolution of $CO₂$ and thus DIC was reduced due to photosynthetic $HCO₃$ -utilization in the light, and in the dark the cease of photosynthesis and continuation of aeration increased DIC and lowered pH. Addition of $CO₂$ $(air + 1250$ ppm $CO₂)$ in the culture of the alga was confirmed to raise DIC concentration. It was suggested that addition of CO₂ could suppress the photorespiration of P. yezoensis by elevating CO₂/O₂ ratio in the culture medium and then at the active site of Rubisco, the oxygenation of which could be subsequently reduced.

Key Index Words: CO_2 —Mehler reaction—mitochondrial respiration— O_2 —photosynthesis—Porphyra yezoensis-red alga-Rubisco.

The authors reported in the previous paper (Gao et al. 1991) that the growth of Porphyra yezoensis Ueda was enhanced in the culture using aeration with high $CO₂$. It is of general concern to understand how high $CO₂$ affects the efficiency of photosynthetic carbon fixation of the alga. O_2 consumption during photosynthetic O_2 evolution reflects photorespiration, which is primarily determined by the competition between $CO₂$ and $O₂$ for the active site of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco). If photorespiration is considerably active in the alga, high $CO₂$ supply can be expected to suppress the photorespiration by raising the ratio of $CO₂$ to $O₂$ within the cell and increase the

photosynthetic efficiency.

In this paper, the authors present basic knowledge on the O_2 uptake and "CO₂" transport of P. yezoensis while illuminated and discuss its relevance to the biological response of the alga to high $CO₂$ in culture.

Material and Methods

Cultures of leafy thalli of Porphyra yezoensis (ZW-22, ZGRW) were initiated from conchospores released from free-living conchocelis as previously reported (Gao et al. 1991). Thalli of 2-3 cm long (about 40 days after conchospore attachment) cultured using aeration (350 ppm $CO₂$) were used for the $O₂$ uptake experiments. The culture medium was prepared and $CO₂$ was supplied as in the previous paper (Gao et al. 1991).

^{*} Present address: Hawaii Natural Energy 1nstitute, 2540 Dole Street, Holmes 246, Honolulu, H1 96822, U.S.A.

374 Gao, K., Aruga, Y., Asada, K., Ishihara, T., Akano, T. and Kiyohara, M.

The evolution of ${}^{16}O_2$ and uptake of ${}^{18}O_2$ during photosynthesis were determined simultaneously at 10 second intervals by using a gas-permeable membrane-mass spectrometer system. A silicon membrane (125 μ m thick) probe was inserted into a cylindrical reaction vessel (35 ml, 3 cm in diameter) to separate the medium, filtered (Whatman, GF/C) seawater, from the high-vacuum inlet to a quadrupole mass spectrometer (Ametek M200). The seawater was bubbled with N_2 for 30 minutes to expel ${}^{16}O_2$ before dissolving ${}^{18}O_2$ into it. Since the O_2 uptake reaction does not discriminate between the isotopes, correction was made for the amount of ${}^{16}O_2$ consumed according to Radmer and Ollinger (1980).

The reaction vessel was equipped with a water jacket and the temperature within it was controlled at 15°C.

The dissolved inorganic carbon (DIC) in the culture medium was measured by using a Shimadzu total organic analysis unit (TOC-5000).

Results

When the light was turned on, ${}^{16}O_2$ increased and $CO₂$ decreased due to photosynthesis, whereas ${}^{18}O_2$ decreased due to oxygen uptake reactions; when the light was turned off, oxygen $(^{16}O_2$ and $^{18}O_2$) decreased and $CO₂$ increased due to mitochondrial respiration (Fig. 1). It is easy to see from the slope of ${}^{18}O_2$ decrease that O_2 uptake by the alga was faster in the light than in the dark (Table 1), in the former being about twice as fast as in the latter. O_2 uptake was 41 and 46% of

Fig. 1. Oxygen uptake and evolution (A), and $CO₂$ uptake (B) in photosynthesis of *Porphyra* yezoensis (ZW-22).

 O_2 evolution at the first and second illumination, respectively (Table 1).

The apparent $CO₂$ uptake rate derived from $CO₂$ decrease (Fig. 1B) was extraordinarily slow compared with the rate of pho tosynthetic O_2 evolution (Table 1). To estimate the real $CO₂$ uptake rate, the $CO₂$ supply rate from the dehydration of $HCO₃$ ⁻ was integrated with the apparent $CO₂$ uptake rate. Nevertheless, the rate of photosynthetic $O₂$ evolution exceeded about 13-fold the estimated real $CO₂$ uptake rate (Table 1). This shows a substantive evidence for $HCO₃$ uptake in P. yezoensis. The rate of O_2 uptake in the dark exceeded the apparent rate of $CO₂$

Table 1. Gas exchange rate (μ mol min⁻¹ dm⁻²) during photosynthesis in *Porphyra yezoensis*, the ratio of O_2 evolution to CO₂ uptake (b/c) in the light and the ratio of CO₂ to O₂ (CO₂/O₂) in the reaction vessel when light (PAR, 250 µmol photons m⁻² s⁻¹) was turned on.

Light	(a)	O_2 upt. [*] O_2 evol. [*] (b)	Ratio a/b	$CO2$ 'upt.'*	$CO2$ upt. (c)	Ratio b/c	$CO2$ rel.*	CO ₂ /O ₂
on	2.15	5.25	0.41	$0.22(0.19)$ **	0.41	12.80		0.09
off	1.10						0.04	
on	1.95	4.23	0.46	$0.13(0.19)$ **	0.32	13.22		0.06
off	0.97						0.03	

upt. is for uptake, 'upt.' for apparent uptake, evol. for evolution, rel. for release.

** Values in parentheses are CO₂ supply rate (μ mol CO₂ min⁻¹) from dehydration of HCO₃- at 15°C (Cook et al. 1986) within the reaction vesse1.

Fig. 2. Oxygen uptake and evolution in Por $phyra$ yezoensis as a function of photosynthetically active radiation (PAR).

release 28- to 32-fold, which might be due to hydration of $CO₂$ to form $HCO₃⁻$ inside the algal cell (Table 1).

The oxygen uptake increased linearly and the oxygen evolution increased parabolically with the increase of PAR (photosynthetically active radiation, 400-700 nm) (Fig. 2). O_2 uptake of P. yezoensis while illuminated was similarly observed in the strains, ZW-22 and ZGRW.

Figure 3 shows daily variations of DIC and pH in the culture of P. yezoensis aerated with air (control) and air + 1250 ppm $CO₂$. DIC decreased in the light period and increased in the dark period to reach a constant level. The pH variation shows an opposite pattern to DIC. DIC was elevated and pH was 10 wered in $+1250$ ppm $CO₂$ culture compared with the control.

Discussion

In the present study, basic knowledge was obtained on the gas exchange during the pho tosynthesis of P. yezoensis. O_2 uptake was enhanced in the light and increased with

Fig. 3. Daily variation of pH and DIC (dissolved inorganic carbon) in culture of Porphyra yezoensis (ZGRW) using aeration (0.5 l min⁻¹) with air (350 ppm CO_2) and air + 1250 (1600) ppm CO_2 . About 1.25 g (fresh weight) of thalli (38 days after concospore attachment, about 3 cm long) were maintained in 500 ml culture medium in a culture flask.

increase ofPAR. Oxygen uptake in the light stems from the following three reactions: 1) mitochondrial respiration, 2) Mehler reaction and 3) RuBP (ribulose-1 5-bisphosphate) oxygenation. Mitochondrial respiration is independent of light, but Mehler reaction and RuBP oxygenation are light-dependant. The enhanced O_2 uptake of P. yezoensis in the light is due to reactions 2) and 3). The proportion of O_2 uptake to evolution was higher at low PAR than at high PAR (Fig. 2), which implies that increment in O_2 uptake with increasing PAR is slower than that in photosynthetic O_2 evolution. This must be due to much more active RuBP oxygenation at dim light when photosynthesis was much more light-limited. RuBP oxygenation is an inescapable consequence of $CO₂$ fixation during photosynthesis (Beardall 1989). Because Rubisco catalyses both carboxylation of $CO₂$ and RuBP oxygenation, O_2 concentration affects RuBP oxygenation. In the present investigation, O_2 increased and CO_2 decreased with proceeding of photosynthesis in the closed reaction vessel (Fig. 1, Table 1), therefore, the ratio of $CO₂/O₂$ at the active site of Rubisco might be lowered to get close to that outside the algal cell (Table 1), resulting in an enhanced oxygen uptake in the second illumination.

As previously reported (Gao *et al.* 1991), the pH rise in the culture of P . yezoensis (Fig. 3) is due to photosynthetic use of $HCO₃$. The high ratio of photosynthetic O_2 evolution to $CO₂$ uptake (Table 1) provides a substantive evidence for active $HCO₃$ uptake. Comparing the rate of photosynthetic O_2 evolution with the rate of $CO₂$ supply arising from non-catalyzed dehydration of $HCO₃$, Cook et al. (1986) demonstrated the $HCO₃$ uptake in 15 species of red algae and 2 species of brown algae which were proved not having extracellular carbonic anhydrase (CA). The rate of photosynthetic O_2 evolution in Porphyra occidentalis was reported to exceed 15.9fold the $CO₂$ supply rate (Cook et al. 1986). In the present study, the rate of photosynthetic O_2 evolution exceeded about 13-fold the rate of $CO₂$ uptake in *P. yezoensis*, which probably does not possess extracellular CA. In the dark, on the other hand, the rate of O_2 uptake was about 30 times higher than the rate of $CO₂$ release (Table 1). This shows that $CO₂$ arising from mitochondrial respiration could be hydrated with the catalysis of intracellular CA to form $HCO₃⁻$, supplementing the intracellular pool of inorganic carbon which had been depleted in the light, so that only a small amount of $CO₂$ was released into the medium (Table 1).

In the culture of Porphyra yezoensis aerated with air and air $+1250$ ppm $CO₂$, constant levels of pH and DIC in the middle of light period (Fig. 3) indicate the balance between the photosynthetic carbon fixation and dissolution of $CO₂$ from air into the culture medium. DIC level was reduced at about 1.5 mM in the middle of the light period even in the $CO₂$ -enriched culture, where the photosynthesis of the alga must have been carbon-limited and photorespiration could be still active. However, since O_2 concentration in the culture medium should be constant because of the continuous aeration, the ratio of $CO₂$ to O_2 must be raised in the culture medium with addition of $CO₂$ and consequently at the active site of Rubisco, therefore the active photorespiration could be suppressed. The K_m $(CO₂)$ of Rubisco from marine macroalgae is

reported to be in a 30-60 μ M range (Kerby and Raven 1985), which is much higher than the concentration of free $CO₂$ in seawater (about 14 μ M at 15°C, pH 8.2). When P. yezoensis is cultured using aeration with high $CO₂$, increased partial pressure of $CO₂$ serves to saturate Rubisco-catalyzed carboxylation. Consequently, the enhanced growth of P. yezoensis in high $CO₂$ as reported previously (Gao et al. 1991) could be due to suppression of photorespiration and acceleration of carboxylation, which result in enhanced photosynthetic efficiency.

The proportion of algal biomass to water volume in the culture (Fig. 3) was 2.5 kg m⁻³. Growth of the alga was shown to be enhanced in air + 650 and + 1250 $CO₂$ cultures with the proportion of biomass to water volume being less than 0.5 kg m^{-3} (Gao et al. 1991). It is suggested that growth of the alga in cultivation site might be $CO₂$ -limited when seawater exchange is slow between the inside and the outside of the algal population. Since increase in seawater current speed increases the photosynthesis of P. yezoensis (Gao et al. 1992), fast seawater flow through the algal population can be expected to lessen photorespiration and give rise to less $CO₂$ -limited growth by taking away photosynthesis-evolved $O₂$ and resupplying $'CO₂'$.

Acknowledgements

We thank Prof. A. Miura, Tokyo University of Fisheries, for his kindness in providing the free-living conchocelis of P. yezoensis.

References

- Beardall, J. 1989. Photosynthesis and photorespiration in marine phytoplankton. Aquat. Bot. 34: 105-130.
- Cook, C. M., Lanaras, T. and Colman, B. 1986. Evidence for bicarbonate transport in species of red and brown macrophytic marine algae. J. Exp. Bot. 37: 977-984.
- Gao, K., Aruga, Y., Asada, K., Ishihara, T., Akano, T. and Kiyohara, M. 1991. Enhanced growth of the red alga Porphyra yezoensis Ueda in high CO₂ concentrations. J. Appl. Phycol. 3: 355-362.
- Gao, K., Aruga, Y., Asada, K., Ishihara, T., Akano, T. and Kiyohara, M. 1992. Enhancement of photosyn-

thetic CO₂ fixation of the red alga Porphyra yezoensis Ueda in flowing seawater. Jpn. J. Phycol. 40: 397-400.

Kerby, N. W. and Raven, J. A. 1985. Transport and fixation of inorganic carbon by marine algae. Adv.

Bot. Res. 11: 71-123.

Radmer, R. and Ollinger, O. 1980. Measurement of the oxygen cyde: the mass spectrometric analysis of gases dissolved in a liquid. Methods in Enzymology 69: 547-560.

高 坤山*・有賀祐勝**・浅田浩二***・石原利章****・赤野 徹****・清原正高****: 紅藻スサビノリの光呼吸と CO₂ 固定

高CO2によるスサビノリの生長促進を解明するためにその光合成時のガス交換を調べた。スサビノリの光照 射下での酸素(¹⁸O₂)の取り込みは光強度の増加とともに直線的に増加し, 250 μmol photons m⁻² s⁻¹において酸 素発生の約40%に達することを明らかにした。光合成時に CO₂ の取り込み速度が酸素発生速度より著しく下回 ったことはスサビノリの HCO3- を取り込むことを裏付ける。一方,通気培養の場合,明期には pH の上昇に伴 い溶存無機炭素 (DIC) 濃度が低下し,暗期には pH の低下に伴い DIC 濃度が増加することが分かった。これは 明期には光合成による CO₂ 固定が空気から培養液への CO₂ の溶け込みを上回るため培養液中の HCO₃ が利用 され,暗期には通気による CO2 のとけ込みだけが進んだ結果である。また, CO2 の添加 (空気 +1250 ppm) に よって培養液中の無機炭素濃度が高められたことが確認された。スサビノリの通気培養では, CO2の添加によ って高まった培養液での CO₂/O₂が細胞内の CO₂/O₂を高めて Rubisco の oxygenase としての活性を抑えること によってその光呼吸が抑えられるものと推測された。 (*530大阪市北区中崎西2-3-39 関西総合環境センター (present address: Hawaii Natural Energy Institute, 2540 Dole Street, Holmes 246, Honolulu, HI 96822, U.S.A.), **108 東京都港区港南4-5-7 東京水産大学, ***611 京都府宇治市 京都大学食糧科学研究所, ****661 兵庫県 尼崎市若主子3-11-20 関西電力総合技術研究所)

 $\label{eq:2} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{$